목차
FinAlgML(놀러온특강) Python을 통한 웹 스크래핑 및 DB화
크롤링 예제 대상
상장사 리스트
- http://finance.daum.net/quote/all.daum?type=S&stype=P
- bs4 사용 방법 소개
- HTML
네이버 증권 종목분석
- 네이버 금융에서 제공되는 코스피, 코스닥 상장사들의 재무재표, 주식 메타데이터(Financial Summary) 데이터
- ex) SK하이닉스
- 비동기 데이터 (ajax)
- source : data_crawler/naver_stock_meta_info/crawler.py
- 저장 : mysql
네이버 증권 종목토론
- 네이버 금융의 각 종목별 종목 토론실 게시판의 날짜, 제목, 투자의견, 글쓴이, 조회, 공감, 비공감, 내용 등 수집
- 투자의견( 의견없음 매수, 강력매수, 매도, 강력매도, 중립 ) 을 라벨로서 기반하여 제목, 내용에 나타나는 단어를 분석하여 긍, 부정 단어를 확보하기 위한 학습용 데이터로 활용 가능
- source : data_crawler/naver_stock_discussion/crawler.py
- 저장 : mongodb
네이버 증권 실시간 데이터
- 장 마감 이후에도 실시간 데이터가 온다면 라이브 코딩
오늘 예제에서 사용되는 Tool, Library
- Chrome Developer Tools (개발자도구)
- BeautifulSoup4
- Python 에서 HTML 구조 분석, 객체화하는 Library
pip install BeautifulSoup4
import bs4
- requests
- gevent
- http://curl.trillworks.com/
- har2requests
- crawlib
- https://github.com/dongsam/crawlib
- pymysql
- pymongo
상장사 리스트
- http://finance.daum.net/quote/all.daum?type=S&stype=P
- bs4 사용 방법 소개
- HTML
import urllib2
import bs4
url = 'http://finance.daum.net/quote/all.daum?type=S&stype=P'
html = urllib2.urlopen(url).read()
len(html)
384272
print html[:1000]
<!doctype html public "-//w3c//dtd html 4.01 transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html lang="ko">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=10" />
<title>전종목 시세 - Daum 금융</title>
<meta name="verify-v1" content="iXgHW7UooMcyeiV/Zb0Tk/yK2yB+IuA5/5GgIzGBEns=" >
<meta property="og:image" content="http://i1.daumcdn.net/img-media/mobile/meta/finance.png"/>
<link rel="stylesheet" href="http://s1.daumcdn.net/stock/css/common.css?ver=20160220214249" type="text/css">
<link rel="stylesheet" href="http://s1.daumcdn.net/stock/css/newHeader.css?ver=20160220214249" type="text/css">
<link rel="stylesheet" href="http://s1.daumcdn.net/stock/css/column.css?ver=20160220214249" type="text/css">
<link rel="stylesheet" href="http://s1.daumcdn.net/stock/css/trade.css?ver=20160220214249" type="text/css">
<script type="text/javascript" src="http://s1.daumcdn.net/stock/js/common.js?ve
soup = bs4.BeautifulSoup(html)
title = soup.find('title')
print title
print title.text
<title>전종목 시세 - Daum 금융</title>
전종목 시세 - Daum 금융
print len(soup.find_all('td'))
print len(soup.find_all('td','txt'))
1724
571
기업 개수 미달, HTML파일을 끝까지 파싱하지 못한 상황
- BeautfulSoup 함수호출시 파서를 ‘html.parser’ 로 지정해줌으로서 해결가능
soup = bs4.BeautifulSoup(html, 'html.parser')
print len(soup.find_all('td'))
print len(soup.find_all('td','txt'))
3580
1189
for i in soup.find_all('td','txt')[:20]:
print i.text
able KQ Monthly Best 11 ETN
able Monthly Best 11 ETN
able Quant비중조절 ETN
able 우량주 Monthly Best 11 ETN
able 코스피200선물플러스 ETN
AJ네트웍스
AJ렌터카
AK홀딩스
ARIRANG 200
ARIRANG AC 월드(합성 H)
ARIRANG K100EW
ARIRANG KOSPI50
ARIRANG S&P; 배당성장
ARIRANG 고배당주
ARIRANG 단기유동성
ARIRANG 미국고배당주(합성 H)
ARIRANG 바벨 채권
ARIRANG 방어주
ARIRANG 선진국(합성 H)
ARIRANG 스마트베타 LowVOL
URL에서 code 추출
for i in soup.find_all('td','txt')[:20]:
print i.text, i.a['href']
able KQ Monthly Best 11 ETN /item/main.daum?code=580004
able Monthly Best 11 ETN /item/main.daum?code=580003
able Quant비중조절 ETN /item/main.daum?code=580002
able 우량주 Monthly Best 11 ETN /item/main.daum?code=580005
able 코스피200선물플러스 ETN /item/main.daum?code=580001
AJ네트웍스 /item/main.daum?code=095570
AJ렌터카 /item/main.daum?code=068400
AK홀딩스 /item/main.daum?code=006840
ARIRANG 200 /item/main.daum?code=152100
ARIRANG AC 월드(합성 H) /item/main.daum?code=189400
ARIRANG K100EW /item/main.daum?code=141240
ARIRANG KOSPI50 /item/main.daum?code=122090
ARIRANG S&P; 배당성장 /item/main.daum?code=222170
ARIRANG 고배당주 /item/main.daum?code=161510
ARIRANG 단기유동성 /item/main.daum?code=190160
ARIRANG 미국고배당주(합성 H) /item/main.daum?code=213630
ARIRANG 바벨 채권 /item/main.daum?code=190150
ARIRANG 방어주 /item/main.daum?code=161490
ARIRANG 선진국(합성 H) /item/main.daum?code=195970
ARIRANG 스마트베타 LowVOL /item/main.daum?code=236460
company_dic = {}
for i in soup.find_all('td','txt'):
company_dic[i.text] = i.a['href'].split('=')[1]
print len(company_dic)
company_dic[u'AK홀딩스']
1189
u'006840'
위 과정 함수화시켜 kosdaq도 간편히 가져와보기
def get_company_list(url):
soup = bs4.BeautifulSoup(urllib2.urlopen(url).read(),'html.parser')
company_dic = {}
for i in soup.find_all('td','txt'):
company_dic[i.text] = i.a['href'].split('=')[1]
return company_dic
kospi_url = 'http://finance.daum.net/quote/all.daum?type=U&stype=P'
kosdaq_url = 'http://finance.daum.net/quote/all.daum?type=U&stype=Q'
kosdaq_dic = get_company_list(kosdaq_url)
for k, v in kosdaq_dic.items()[:20]:
print k, v
이테크건설 016250
해덕파워웨이 102210
산성앨엔에스 016100
엔에이치스팩5호 215790
서부T&D; 006730
이스트아시아홀딩스 900110
웰크론 065950
아이리버 060570
대주산업 003310
우리이티아이 082850
흥국에프엔비 189980
CS 065770
시그네틱스 033170
성우전자 081580
신진에스엠 138070
바이오스마트 038460
동양이엔피 079960
심엔터테인먼트 204630
피제이메탈 128660
한창산업 079170
pymysql 을 이용한 mysql 세팅 및 db insert(replace)
import pymysql # pip install pymysql
mysql_host = "127.0.0.1"
mysql_user = "root"
mysql_passwd = "mysql"
mysql_db = "stock"
mysql_port = 3306
conn = pymysql.connect(host=mysql_host, user=mysql_user, passwd=mysql_passwd, db=mysql_db, port=mysql_port, charset='utf8')
conn.autocommit(True)
cur = conn.cursor()
'''
CREATE TABLE `COMPANY2` (
`company_id` varchar(11) NOT NULL DEFAULT '',
`company_name` varchar(255) DEFAULT '',
`company_type` tinyint(10) DEFAULT NULL,
PRIMARY KEY (`company_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
'''
for k,v in kosdaq_dic.items():
cur.execute("replace into COMPANY2 (company_id, company_name, company_type ) values ('{}', '{}', '{}')".format( v.encode('utf-8'), k.encode('utf-8'), 0 ))
for k,v in company_dic.items():
cur.execute("replace into COMPANY2 (company_id, company_name, company_type ) values ('{}', '{}', '{}')".format( v.encode('utf-8'), k.encode('utf-8'), 1 ))
cur.execute("""select * from COMPANY2""")
cur_tmp = cur.fetchall()
for i in cur_tmp[:10]:
print i[0], i[1], i[2]
000020 동화약품 1
000030 우리은행 1
000040 KR모터스 1
000050 경방 1
000060 메리츠화재 1
000070 삼양홀딩스 1
000075 삼양홀딩스우 1
000080 하이트진로 1
000087 하이트진로2우B 1
000100 유한양행 1
네이버 증권 종목분석
- 네이버 금융에서 제공되는 코스피, 코스닥 상장사들의 재무재표, 주식 메타데이터(Financial Summary) 데이터
- ex) SK하이닉스
- 비동기 데이터 (ajax)
- source : data_crawler/naver_stock_meta_info/crawler.py
- 저장 : mysql
import requests
import urllib
import bs4
import json
import re
import crawlib
import datetime
import sys
import crawlib
import pymysql # pip install pymysql
mysql_host = "127.0.0.1"
mysql_user = "root"
mysql_passwd = "mysql"
mysql_db = "stock"
mysql_port = 3306
conn = pymysql.connect(host=mysql_host, user=mysql_user, passwd=mysql_passwd, db=mysql_db, port=mysql_port, charset='utf8')
conn.autocommit(True)
cur = conn.cursor()
def extract_table(html):
soup = bs4.BeautifulSoup(html)
th = soup.find_all("th","title")
vertical_columns = [i.text.strip() for i in th]
bg = soup.find_all("th",re.compile(r"^r"))[2:]
horizon_columns = [crawlib.getOnlyDigit(i.text.strip()) for i in bg]
cBk = [int(crawlib.getOnlyDigit(i.text)) for i in soup.find_all("td","num")]
# colums_count_check
if len(cBk) != (len(vertical_columns) * len(horizon_columns)):
print(error)
sys.exit()
return vertical_columns, horizon_columns, cBk
def request_and_store(company_code, freq_typ, fin_typ=0):
company_code = str(company_code).zfill(6)
# zero padding 6
url = 'http://companyinfo.stock.naver.com/v1/company/ajax/cF1001.aspx?cmp_cd={}&fin_typ={}&freq_typ={}'.format(company_code, str(fin_typ), freq_typ)
print url
headers = {
'Accept-Language' : 'ko-KR,ko;q=0.8,en-US;q=0.6,en;q=0.4',
'Accept-Encoding' : 'gzip, deflate, sdch',
'X-Requested-With' : 'XMLHttpRequest',
'Connection' : 'keep-alive',
'Accept' : 'text/html, */*; q=0.01',
'User-Agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36',
'Host' : 'companyinfo.stock.naver.com',
}
cookies = {
}
data_dic = {
# 'freq_typ' : '''Y''',
# 'fin_typ' : '''0''',
# 'cmp_cd' : '''051910''',
}
data = ""
for k, v in data_dic.items():
data += urllib.quote_plus(k)+"="+urllib.quote_plus(v)+"&"
res = requests.post(url, headers=headers, cookies=cookies, data=data)
vertical_columns, horizon_columns, cBk = extract_table(res.content)
cnt = 0
print len(cBk)
for value in cBk:
vertical_i = cnt / len(horizon_columns)
horizon_i = cnt % len(horizon_columns)
# print vertical_columns[vertical_i], horizon_columns[horizon_i]
# print value
try:
cur.execute("""replace into META (company_id, meta_type, meta_freq_type, meta_value, meta_date, meta_crawled_date ) values ('{}', '{}', '{}', '{}', '{}', '{}')""".format(
company_code, vertical_columns[vertical_i].encode("utf-8"), freq_typ , value, datetime.datetime.strptime(horizon_columns[horizon_i],"%Y%m"), datetime.datetime.now())
)
except Exception as e:
print e
cnt += 1
print cnt
cur.execute("""select * from COMPANY2""")
cur_tmp = cur.fetchall()
for i in cur_tmp[:3]:
request_and_store(i[0],'Q')
request_and_store(i[0],'Y')
http://companyinfo.stock.naver.com/v1/company/ajax/cF1001.aspx?cmp_cd=000020&fin_typ=0&freq_typ=Q
256
256
http://companyinfo.stock.naver.com/v1/company/ajax/cF1001.aspx?cmp_cd=000020&fin_typ=0&freq_typ=Y
256
256
http://companyinfo.stock.naver.com/v1/company/ajax/cF1001.aspx?cmp_cd=000030&fin_typ=0&freq_typ=Q
256
256
http://companyinfo.stock.naver.com/v1/company/ajax/cF1001.aspx?cmp_cd=000030&fin_typ=0&freq_typ=Y
256
256
http://companyinfo.stock.naver.com/v1/company/ajax/cF1001.aspx?cmp_cd=000040&fin_typ=0&freq_typ=Q
256
256
http://companyinfo.stock.naver.com/v1/company/ajax/cF1001.aspx?cmp_cd=000040&fin_typ=0&freq_typ=Y
256
256
주기적 실행, 자동화
- cron ( crontab )
- supervisor
네이버 증권 종목토론
- 네이버 금융의 각 종목별 종목 토론실 게시판의 날짜, 제목, 투자의견, 글쓴이, 조회, 공감, 비공감, 내용 등 수집
- 투자의견( 의견없음 매수, 강력매수, 매도, 강력매도, 중립 ) 을 라벨로서 기반하여 제목, 내용에 나타나는 단어를 분석하여 긍, 부정 단어를 확보하기 위한 학습용 데이터로 활용 가능
- source : data_crawler/naver_stock_discussion/crawler.py
- 저장 : mongodb
import logging
import pymongo
import crawlib
import time
from datetime import datetime
from gevent import monkey
monkey.patch_all()
from gevent.pool import Pool
collection = pymongo.MongoClient().stock.naver_discussion
class NaverCrawling(crawlib.Crawling):
def get_item_list(self, cate, page):
url = self.make_target_url(cate, page)
soup = crawlib.getSoup(url)
link_list = []
for i in soup.find_all('tr',{'onmouseover':'mouseOver(this)'}):
link = i.find_all('td')[1].a['href'].split('&st=&sw=&page')[0]
link = crawlib.urljoin('http://finance.naver.com',link)
# already exist this data
if self.data_dic.has_key(link):
print "exist", link
continue
self.data_dic[link] = {}
self.data_dic[link]['date'] = i.find_all('td')[0].text.strip()
self.data_dic[link]['title'] = i.find_all('td')[1].a['title'].strip()
self.data_dic[link]['opinion'] = i.find_all('td')[2].text.strip()
self.data_dic[link]['view'] = i.find_all('td')[4].text.strip()
self.data_dic[link]['sympathy'] = i.find_all('td')[5].text.strip()
self.data_dic[link]['unsympathy'] = i.find_all('td')[6].text.strip()
self.data_dic[link]['_id'] = link
link_list.append(link)
# self.get_item(link)
if len(link_list) == 0:
return 'stop'
pool = Pool(len(link_list))
res = pool.map(self.get_item, link_list)
def get_item(self, url, key=''):
if not key:
key = url
soup = crawlib.getSoup(url)
content = '\n'.join([i.text for i in soup.find_all('div','view_se')]).strip()
user = soup.find('th','info').find('span').text.strip()
nid = crawlib.get_param_from_url(url, 'nid')
code = crawlib.get_param_from_url(url, 'code')
self.data_dic[key]['content'] = content
self.data_dic[key]['nid'] = nid
self.data_dic[key]['code'] = code
self.data_dic[key]['user'] = user
print key, self.data_dic[key]['opinion']
# runtime_check = time.time()
collection.replace_one({"_id": key}, self.data_dic[key], upsert=True)
# print time.time() - runtime_check
# todo: mongo db library 화
# todo: 최신글부터 가져오되 몇개이상(한페이지이상) 중복 감지시 stop
target_name = 'naver_stock_discussion'
naver_dicussion = NaverCrawling(target_name=target_name, base_url='http://finance.naver.com/item/board.nhn?', cate_param='code',
page_param='page', cate_list_path='category.txt', page_list=range(1, 1000))
naver_dicussion.crawling_cate_list(cate_delay=0, page_delay=0)
# 결과는 console 에서 확인
네이버 증권 실시간 데이터
- 장 마감 이후에도 실시간 데이터가 온다면 라이브 코딩
- http://finance.naver.com/item/main.nhn?code=035420
- live coding youtube 영상 : https://youtu.be/2UP91K7SUzE
import crawlib # https://github.com/dongsam/crawlib
res = crawlib.har2requests('finance.naver.com.har') # 각자 크롬 개발자도구통해 받은 har 파일 경로 입력
# print res # 아래 코드 생성
import requests
import urllib
import json
from pprint import pprint
url = 'http://polling.finance.naver.com/api/realtime.nhn?query=SERVICE_ITEM:035420|SERVICE_RECENT_ITEM:035420&_callback='
headers = {
'Accept-Language' : 'ko-KR,ko;q=0.8,en-US;q=0.6,en;q=0.4',
'Accept-Encoding' : 'gzip, deflate, sdch',
'Connection' : 'keep-alive',
'Accept' : '*/*',
'User-Agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.87 Safari/537.36',
'Host' : 'polling.finance.naver.com',
'Referer' : 'http://finance.naver.com/item/main.nhn?code=035420',
}
cookies = {
}
data_dic = {
}
data = ""
for k, v in data_dic.items():
data += urllib.quote_plus(k)+"="+urllib.quote_plus(v)+"&"
res = requests.post(url, headers=headers, cookies=cookies, data=data)
res_str = res.content.decode('euc-kr').encode('utf-8')
res_json = json.loads(res_str)
pprint(res_json)
{u'result': {u'areas': [{u'datas': [{u'aa': 37807000000,
u'aq': 59460,
u'cd': u'035420',
u'cnsPer': 31.27,
u'cr': 0.47,
u'cv': 3000,
u'hv': 642000,
u'll': 446000,
u'lv': 630000,
u'ms': u'CLOSE',
u'mt': u'1',
u'nav': None,
u'nm': u'NAVER',
u'nv': 639000,
u'ov': 633000,
u'pbr': 8.78,
u'pcv': 636000,
u'per': 40.6,
u'rf': u'2',
u'sv': 636000,
u'tyn': u'N',
u'ul': 826000}],
u'name': u'SERVICE_RECENT_ITEM'},
{u'datas': [{u'aa': 37807000000,
u'aq': 59460,
u'cd': u'035420',
u'cnsPer': 31.27,
u'cr': 0.47,
u'cv': 3000,
u'hv': 642000,
u'll': 446000,
u'lv': 630000,
u'ms': u'CLOSE',
u'mt': u'1',
u'nav': None,
u'nm': u'NAVER',
u'nv': 639000,
u'ov': 633000,
u'pbr': 8.78,
u'pcv': 636000,
u'per': 40.6,
u'rf': u'2',
u'sv': 636000,
u'tyn': u'N',
u'ul': 826000}],
u'name': u'SERVICE_ITEM'}],
u'pollingInterval': 60000,
u'time': 1458441607440},
u'resultCode': u'success'}